Total Maximum Daily Load For pH

Okatoma Creek (410511) Pascagoula Basin Mississippi

Prepared By Mississippi Department of Environmental Quality Office of Pollution Control Modeling and TMDL Branch

MDEQ PO Box 2261 Jackson, MS 39225-2261 (601) 961-5171 <u>www.deq.state.ms.us</u>

Mississippi Department of Environmental Quality

Foreword

The amount and quality of the data on which this report is based are limited. As additional information becomes available, the TMDLs may be updated. Such additional information may include water quality and quantity data, changes in pollutant loadings, or changes in landuse within the watershed. In some cases, additional water quality data may indicate that no impairment exists.

Cover image www.okatoma.com/images6/okatomacreek.jpg

Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10-1	deci	D	10	deka	da
10 ⁻²	centi	С	10^{2}	hecto	h
10-3	milli	М	10^{3}	kilo	k
10-6	micro	μ	10^{6}	mega	М
10 ⁻⁹	nano	Ν	10 ⁹	giga	G
10 ⁻¹²	pico	Р	10 ¹²	tera	Т
10-15	femto	F	10 ¹⁵	peta	Р
10 ⁻¹⁸	atto	А	10 ¹⁸	exa	E

Table 1 Prefixes for fractions and multiple of SI units

Table 2 Conversion Factors

To convert from	То	Multiply by	To Convert from	То	Multiply by
Acres	Sq. miles	0.00156	Days	Seconds	86400
Cubic feet	Cu. Meter	0.02832	Feet	Meters	0.3048
Cubic feet	Gallons	7.4805	Gallons	Cu feet	0.13368
Cubic feet	Liters	28.316	Hectares	Acres	2.4711
cfs	Gal/min	448.83	Miles	Meters	1609.34
cfs	MGD	0.64632	Mg/l	ppm	1
Cubic meters	Gallons	264.173	µg/l * cfs	Gm/day	2.45

Table of Contents

Executive Summary
Introduction
Problem Definition
Applicable Water Quality Standard
Watershed Characterization
Source Identification
Data11
Total Maximum Daily Load (TMDL) 15
Wasteload Allocation15
Load Allocation 15
Margin of Safety
Seasonal Variation
Recommendations
References

Figures

Figure 1 Location of Okatoma Watershed	. 5
Figure 2 www.okatoma.com/images6/familyfun2.jpg	. 6
Figure 3 Monitoring Station for Ambient Site	. 7
Figure 4 Landuse Distribution Map	. 8
Figure 5 DMR and Ambient pH Data 2007 - 2011	. 9
Figure 6 pH Ambient Data and Okatoma Stage Data	12
Figure 7 pH Ambient Data and Okatoma Stage Data - 2007	13
Figure 8 DMR and Ambient Data and Stage Data - 2011	14
Figure 9 USGS pH Data from 1965 - 1975	15

Tables

Table 1 Prefixes for fractions and multiple of SI units	2
Table 2 Conversion Factors	2
Table 3 Landuse in Okatoma Watershed above segment	8
Table 4 NPDES Permitted Sources	10
Table 5 Assessment Table for pH	.12

Executive Summary

Okatoma Creek (410511) in Simpson and Covington Counties at Kola from confluence with Roger Creek to Mississippi Watershed boundary 4107 near Gin Branch was assessed by Mississippi Department of Environmental Quality (MDEQ) as not supporting designated uses for the pH standard on the State's 2012 Section 303(d) List of Impaired Water Bodies (MDEQ, 2012). This water quality limited segment is located in the Pascagoula Basin in Simpson and Covington Counties. The applicable water quality criteria, as described in the WPC-2 State of Mississippi's Water Quality Criteria for Intrastate, Interstate, and Coastal Waters, requires that the pH shall be within the range of 6.0 to 9.0 standard units (s.u.) (MDEQ, 2012).

The specific causes of the low pH for these waters are not known but are believed to be a combination of point source discharge and stormwater discharge over acid soils. The low pH in this water must be attributed either to unknown point or nonpoint sources of low pH or to natural background conditions. There is information that suggests waters in this watershed exhibit low pH due to naturally acidic soil conditions. USGS pH data from the 1960s and 1970s show historically low pH values for this segment.

The wasteload allocation for the total maximum daily load (TMDL) requires that the pH in effluent from permitted point sources shall be within the range of 6.0 to 9.0 s.u. The load allocation for the TMDL requires that the pH of waters originating from nonpoint sources shall be within the range of 6.0 to 9.0 s.u. with the exception of some stormwater permits that allow a range of 5.0 to 9.0 due to natural conditions. These allocations provide for the year-round protection of water quality.

Figure 1 Location of Okatoma Watershed

Introduction

Okatoma Creek (410511) was identified by MDEQ as not supporting the designated use for the pH standard on Mississippi's 2012 Section 303(d) List of Impaired Water Bodies (MDEO, 2012). TMDLs are required for impaired waters on the §303(d) list as required by the Federal Clean Water Act §303(d) and the implementing regulations in accordance with 40 CFR.130. A TMDL establishes the maximum amount of a pollutant a water body can assimilate without exceeding the applicable water quality standard. The TMDL also allocates the total allowable load to individual sources or categories of sources through wasteload allocations (WLAs) for point sources, and through load allocations (LAs) for non-point sources.

Figure 2www.okatoma.com/images6/familyfun2.jpg

The WLAs and LAs in the TMDL

provide a basis for states to reduce pollution from both point and non-point source activities that will lead to the attainment of water quality standards and protection of the beneficial use.

Problem Definition

pH is a measure of the hydrogen ion concentration in water as well as a measure of the acidity or Specifically, pH is defined as the negative logarithm of the hydrogen ion alkalinity. concentration in terms of moles per liter.

$$pH = -log [H+]$$

pH values can range from 0 s.u. for a very acidic solution to 14 s.u. for a very basic solution. A pH equal to 7.0 s.u. represents neutrality. One of the most significant environmental impacts of pH is the effect that it has on the solubility and thus the bioavailability of potentially toxic substances that may be present in surface waters. As the pH in a water body becomes lower (i.e., the solution becomes more acidic) many insoluble toxic substances like cyanides, sulfides, and most metals become more soluble and thus more likely to have toxic effects on fish and other aquatic life. Slight increases in pH may greatly increase the toxicity of pollutants such as ammonia. (Lee, 1998)

Due to high humidity in the southeast, large amounts of rainwater, which is naturally slightly acidic, move through the soil. If weak acids are formed from the reaction of hydrogen ions combining with carbon dioxide or other compounds, bases may be gradually leached from the

soil as the water percolates through it, lowering the soil pH. Decomposition of coniferous vegetation, which produces more fulvic acids than either deciduous vegetation or grasses, is another process that lowers soil pH.

Applicable Water Quality Standard

The TMDL for Okatoma Creek will be established at a level to ensure consistency with the applicable water quality criteria and protection of its designated use (i.e., Fish and Wildlife). The State of Mississippi *Water Quality Criteria for Intrastate, Interstate, and Coastal Waters* includes numeric water quality criteria for pH of 6.0 to 9.0 s.u. for waters with these designated uses (MDEQ, 2012). Although there is information that suggests that waters in the basin exhibit low pH due to natural conditions, there is currently not enough information readily available to determine whether the low pH in these segments is attributed to natural conditions. Therefore, the applicable pH criteria for these segments are the allowable range of 6.0 to 9.0 s.u. except where noted in specific stormwater permits.

Watershed Characterization

Okatoma Creek (410511) is located in Covington County adjacent to Highway 49. The first syllable *oka* is from the Choctaw word for "water", however the last two syllables are not completely identified. It may be a derivation of *tombi* which mean to radiate or shine, or it may be from *oktobbi* which means "fog". (Baca, 2007)

Figure 3 Monitoring Station for Ambient Site

There are several canoe outfitters in business in the area which provide for extensive use of the stream for contact recreation as well as camping sites. One of the major canoe starting points is at the highway bridge crossing in Seminary which is within the 410511 segment.

Landuse is predominantly forest and scrubland (Table 1 and Figure 3). The landuse distributions presented in Table 1 and Figure 3 were derived from the State of Mississippi's Automated Resource Information System (MARIS), which is based on 2006 Landsat Thematic Mapper digital images.

	Water	Urban	Forest	Scrub/Barren	Pasture	Cropland	Wetland	
area	507	11,393	56,980	17,469	29,340	2,501	11,663	129,853
% area	0.4%	8.8%	43.9%	13.5%	22.6%	1.9%	9.0%	100.0%

Table 3 Landuse in Okatoma Watershed above segment

Figure 4 Landuse Distribution Map

Figure 5 DMR and Ambient pH Data 2007 - 2011

Source Identification

There are 24 point sources in the watershed that flow into this segment (Table 4 below). The vast majority of the discharge monitoring report (DMR) data submitted by these facilities are within the 6.0 S.U. to 9.0 S.U. range allowed in the water quality standards. These data are shown in Figure 5 above.

Two of these facilities TransMontaigne Operating Company Numbers 1 and 2 have permitted discharges that range from 5.0 S.U. to 9.0 S.U. for stormwater runoff based on naturally acidic soils. The permit rationale from TransMontaigne Operating Company LP Collins Piedmont Terminal Number 2 states the minimum pH effluent limit of 5.0 s.u. is based on previous studies conducted by the permittee during 1992 and 1997 which illustrated the natural acidic conditions of the rainwater, surface water, and the surrounding soils. During the February 1998 re-issuance of this permit, a minimum pH limit of 4.5 was established in the renewal permit. During the reissuance of the permit to the current facility owner, TransMontaigne Product Services Inc., a review of their discharge monitoring reports from the previous five years revealed that only 1 pH value was reported lower than 5.0 s.u. As a result, a minimum pH limit of 5.0 s.u. was

established in the September 23, 2003 reissuance of this permit. The maximum pH effluent limit of 9.0 s.u. is WQBELs that reflects the WPC-2 requirement for the maximum in-stream pH to be less than 9.0 s.u.

Agency Interest	Name	City	County	Permit	Description
13926	Boswell Regional Center	Sanatorium	Simpson	MS0038849	Outfall 001 (Domestic Wastewater Discharge)
1159	Chevron Products Company, Collins Terminal	Collins	Covington	MS0039934	Outfall 001 (Process Tank Water Flow)
13084	Collins POTW	Collins	Covington	MS0023761	Outfall 001 (Domestic/ Municipal Wastewater)
1817	Colonial Pipeline Company, Collins Complex	Collins	Covington	MS0030392	Outfall 001 (Storm Water Discharge From Retention Pond No. 1).
58517	Colonial Pipeline Company, Collins Injection	Collins	Covington	MSG130368- 001	Outfall 001 (Hydrostatic Testing Discharge)
5042	Colonial Pipeline Company, Kola Station	Collins	Covington	MSG130368- 001	Outfall 001 (Hydrostatic Testing Discharge)
4664	D and L Veneers Inc	Collins	Covington	MSG170047- 001	Outfall 001 (Overflow from Recycle Storage Pond)
1057	Kinder Morgan Southeast Terminals LLC, Collins Terminal	Collins	Covington	MS0044628- 001	Outfall 001 (Stormwater, Laboratory Cleanup Water, Washdown Water, Monitor Well Test Water and Aquifer Characteristics Test Water)
13242	Magee POTW	Magee	Simpson	MS0024911	Outfall 001 (Treated Domestic Wastewater Discharge)
1358	Motiva Enterprises LLC, Collins Terminal	Collins	Covington	MS0002968- 002	Outfall 002 (Stormwater)
13291	Mount Olive POTW	Mount Olive	Covington	MS0020699	Outfall 001 (Domestic/ Municipal Wastewater)
37951	MS HUB LLC, MS HUB Natural Gas Handling Facility	Jaynesville	Simpson	MSG130226- 004	Outfall 004 (Hydrostatic Testing Discharge)
14296	Pantry Inc, The, Store Number 3397 dba Big K	Magee	Simpson	MS0052779	Outfall 001 (Treated Car Wash Effluent)
2876	Pine Belt Ready Mix Concrete Inc	Collins	Covington	MSG110054- 001	Outfall-001 (Process Wastewater from Ready Mix Plant)
4363	Plantation Pipeline Company, Collins Terminal	Collins	Covington	MS0046264- 002	Outfall 002 (Stormwater Runoff from the East Catchment Basin)
2060	Rutland Lumber Company Inc	Collins	Covington	MSG170015- 001	Outfall 001 (Overflow from Recycle Storage Pond)
1094	Sanderson Farms Inc, Collins Processing Facility	Collins	Covington	MS0002089	Outfall 001 (Process and Sanitary Wastewaters, Boiler Blowdown Water, Condenser Non-Contact Cooling Water, Ice Water, and Stormwater Run-off).

Table 4 NPDES Permitted Sources

8446	Simpson County Ready Mix Concrete, Plant Number 6	Magee	Simpson	MSG110177- 001	Outfall - 001 (Process Wastewater from Ready Mix Plant)
23696	Suds N Shine Inc, Number 3	Magee	Simpson	MS0060381	Outfall 001 (Treated car wash waste water)
8243	Sullivan Ready Mix	Magee	Simpson	MSG110298- 001	Outfall 001 (Process Wastewater from Ready Mix Plant)
3690	T and M Terminal Company	Collins	Covington	MS0047627	Outfall 001 (Stormwater Discharged From Pond No. 1)
1699	TransMontaigne Operating Company LP, Collins Piedmont Terminal Number 1	Collins	Covington	MS0045454	Hydrostatic Test Discharge, Outfall 001
1725	TransMontaigne Operating Company LP, Collins Piedmont Terminal Number 2	Collins	Covington	MS0045381	Outfall 001 (Stormwater Runoff from Tank Diked Area, Pump Pad Area and Construction Stormwater).
1393	TransMontaigne Operating Company LP, Collins Southeast Terminal	Collins	Covington	MS0021245	Hydrostatic Test Discharge, Outfall 002

Data

MDEQ collected ambient monthly water quality samples from Okatoma Creek. The ambient pH data are shown in Figure 6 below. The chart also has the stage measured in the stream. The pH values appear to be seasonal through 2010. The values in 2011 do not follow the same format.

Figure 7 shows the data for 2011. There appears to be a correlation to stormwater runoff and lower pH values. This would support the theory of acidic soils contributing to the pH values found in the ambient program.

The higher pH values are in the fall each year. The lower values are late spring and summer values. This could possibly be due to leaf litter and die off in the fall altering the pH in the streams.

Further Figure 8 shows the DMR pH data for 2011 which also have more lower values during the fall. There is not sufficient information available to determine the cause for the lower pH values in the fall of 2011. The 2012 ambient data set failed MDEQs quality control process and is not available.

Figure 9 shows the USGS pH data from 1965 through 1975. The pH values were much lower during this time period.

Figure 6 pH Ambient Data and Okatoma Stage Data

Ambient pH measurements were taken between 2007 and 2010 (Figure 6). As shown in this figure, all of water quality standards excursions were attributed to low pH. As summarized in Table 5 below, 9.6% of the pH measurements did not meet water quality standards. These mainly occur in winter and spring.

Table 5 Assessment Table for pH

Data Window	Number of Samples	Number of samples not meeting water quality standards (low pH)	Percentage of data not meeting water quality standards
2007 - 2011	52	5	9.6%

Figure 7 pH Ambient Data and Okatoma Stage Data - 2011

Figure 8 DMR and Ambient Data and Stage Data - 2011

Figure 9 USGS pH Data from 1965 - 1975

Total Maximum Daily Load (TMDL)

A TMDL establishes the total pollutant load a water body can receive and still achieve water quality standards. The components of a TMDL include a WLA for point sources, a LA for non-point sources, and a margin of safety (MOS) to account for uncertainty. 40 CFR.130.2(i) provides flexibility concerning how TMDLs are expressed and suggests that they may be expressed in terms of mass per time, toxicity, or other appropriate measure. For this TMDL as well as other pH TMDLs that have been established by MDEQ, it has been determined that the appropriate measure for the allocation should be in terms of pH standard units.

Wasteload Allocation

There are 24 point sources that discharge to this watershed. For future dischargers to this watershed or to tributaries in the watershed, effluent pH levels should be no less than 6.0 s.u. and no greater than 9.0 s.u. and shall not cause the pH to rapidly change more than 1 unit s.u. except as previously granted in NPDES permits. This is a standard NPDES permit requirement.

Load Allocation

The nonpoint sources causing or contributing to pH violations are unknown. The potential nonpoint sources include, but are not limited to, low pH in stormwater runoff, groundwater

infiltration, and acid rain deposition. The load allocation for this TMDL suggests that the pH of waters originating from any nonpoint sources in the watershed shall be no less than 6.0 s.u. and no greater than 9.0 s.u. if possible based on the natural conditions found in the watershed.

Margin of Safety

The margin of safety in TMDLs is used to account for the lack of knowledge concerning the relationship between the pollutant loads and the resulting quality of the receiving water body. The allocations used in this TMDL ensure that loads from any point source(s) and loads originating from any non-point source activities must individually meet the pH target of 6.0 to 9.0 s.u. before entering the stream. As long as pH from both point and non-point source activities are consistent with the allocations in this TMDL, water quality standards will be met.

Seasonal Variation

The allocation proposed for this TMDL provides for year-round protection (i.e., protection during all seasons and environmental conditions) of the pH criteria. Based on the available data and information, critical conditions for this TMDL could not be determined. However, considering that this TMDL is protective during all seasons and environmental conditions, it will inherently be protective during critical conditions whenever they occur.

Recommendations

The wasteload allocation for this TMDL is considered and used by MDEQ through its NPDES permitting process. In this case, MDEQ on two occasions granted NPDES permit limits lower than the water quality standards based on studying monitoring data results that showed natural conditions in the watershed are below the statewide standard. This TMDL recommends further monitoring from the point sources in their DMRs as well as further ambient monitoring within the stream. Subsequent NPDES permit applicants should further study the data to determine the natural condition of this segment and possibly promote a site specific criterion for pH for this segment of Okatoma Creek.

Achieving the load allocation will require a better understanding of the causes and sources of the low pH. Future monitoring and data collection should provide insight regarding the potential causes of the low pH in this watershed. If low pH is determined in the future to be attributed to natural conditions, the load allocation presented in this TMDL could not be reasonably expected to be achieved. If such a determination were to be made, revision of the TMDL and/or the development of a site specific water quality standard for these segments may be appropriate.

References

- Water Quality Standards for Surface Waters. (2012). Retrieved from EPA Water: Water Quality Standards: http://water.epa.gov/scitech/swguidance/standards/
- Baca, K. A. (2007). Native American Place Names in Mississippi. Jackson, Mississippi: The University Press of Mississippi.
- Canter, L. W. (1985). River Water Quality Monitoring. Chelsea, Michigan: Lewis Publishers, Inc.

Chapra, S. C. (1997). Surface Water Quality Modeling. New York: McFraw-Hill.

- EPA. (1991). *Guidance for Water Quality-based Decisions: The TMDL Process*. Washington, D.C.: EPA Office of Water.
- Lee, C. P. (Ed.). (1998). *Environmental Engineering Dictionary*. Rockville, Maryland: Government Institutes, Inc.
- MDEQ. (2011). WPC-1 NDPES Permitting Regulations. Jackson: MDEQ Office of Pollution Control.
- MDEQ. (2012). *Mississippi 2012 Section 303(d) List of Impaired Water Bodies*. (G. A. Jackson, Ed.) Jackson, Mississippi: MDEQ Office of Pollution Control.
- MDEQ. (2012). WPC-2 Mississippi Water Quality Criteria for Intrastate, Interstate, and Coastal Waters. (K. D. Caviness, Ed.) Jackson: MDEQ Office of Pollution Control.